Рацион балансируем **по протеину**

Махмуд ОМАРОВ, доктор биологических наук Елена ГОЛОВКО, кандидат биологических наук Николай МОРОЗОВ, кандидат сельскохозяйственных наук Марина КАШИРИНА СКНИИЖ

Степень усвоения животными содержащегося в корме протеина зависит от соотношения в нем незаменимых аминокислот: лизина, метионина, треонина, триптофана. Поскольку эти аминокислоты не синтезируются в организме свиней, дефицит в рационе какой-либо из них нарушает обменные процессы и снижает продуктивность животных.

Можно ли найти в условиях хозяйства «идеальный» протеин, где соотношение аминокислот оптимально, чтобы по нему балансировать рационы свиней? Да, можно. О таком протеине и пойдет речь.

режде всего важен учет потребности свиней в протеине на поддержание жизни (основной обмен) и обеспечение продуктивности.

Нормы обменной энергии, приведенные в таблицах 1 и 2, соответствуют потребностям животных всех возрастов, кроме подсосных свиноматок. В комбикормах с преобладанием кукурузы и полножирной сои концентрация энергии высокая, а с зеленой массой, ячменем, пшеницей и горохом — гораздо ниже.

Потребность можно выразить в граммах на 1 кг сухого корма, на кормовую единицу или на единицу обменной энергии. Дневную потребность в лизине поросенка в возрасте 2–4 месяцев рассчитываем так: норма лизина — 0,84%, это 8,4 г в 1 кг комбикорма (8,4 · 1,7). Суточная дача — 1,7 кг комбикорма, в том числе 14,3 г лизина (11 МДж обменной энергии соответствует 1 к. ед.).

Можно рассчитать и так: потребность в процентах от сухого вещества умножаем на 100 и делим на процент протеина в корме

Для синтеза белка и интенсивного роста свиньям необходимо получать одновременно все аминокислоты при каждом кормлении. Не будет хорошего усвоения, если, допустим, утром давать только зерновую дерть, днем — сочные корма, вечером — белковые добавки. Вводимые в корма в профилактических дозах антибиотики, янтарная, лимонная, аскорбиновая, молочная органические кислоты, пробиотики (кемзайм-W, целловиридин, пробицелл и т.п.), соли меди и железа улучшают всасывание аминокислот в тонком кишечнике.

Особо надо сказать о сое, богатой лизином, поскольку протеин зерен злаковых культур чрезвычайно беден этой незаменимой аминокислотой (дефицит 56–64% в сравнении с «идеальным» протеином). Разные сорта сои

Таблица 1

Нормы потребности доступных аминокислот для свиней, %

Аминокислота	Масса животного, кг				
Аминокислота	1,2-5	5–18	60-120	120-180	
Лизин	1,8	1,2	0,84	0,63	
Метионин + цистин	0,9	0,6	0,5	0,37	
Триптофан	0,32	0,2	0,15	0,12	
Треонин	1	0,7	0,48	0,38	
Изолейцин	0,9	0,65	0,42	0,32	
Лейцин	1,82	1,1	0,85	0,64	
Валин	1,08	0,7	0,5	0,38	
Аргинин	0,72	0,5	0,3	0,2	
Гистидин	0,54	0,36	0,25	0,18	
Фенилаланин + тирозин	1,53	1	0,7	0,53	
Сырой протеин	28	22	17	13	
Обменная энергия, МДж/кг	20,9	15	13,8	12,8	
Суточная норма, кг/гол.	0,23	0,7	1,7	2,8	

Таблица 2

Нормы потребности доступных аминокислот для свиноматок и хряков, %

Аминокислота	холо- супо-		лакти-	Хряки
	стые	росные	рующие	
Лизин	0,5	0,6	0,75	0,75
Метионин + цистин	0,3	0,32	0,36	0,35
Триптофан	0,1	0,11	0,12	0,12
Треонин	0,34	0,36	0,38	0,37
Изолейцин	0,27	0,34	0,34	0,35
Лейцин	0,55	0,6	0,68	0,68
Валин	0,32	0,4	0,46	0,46
Аргинин	0,15	0,35	0,4	0,46
Гистидин	0,15	0,23	0,24	0,25
Фенилаланин + тирозин	0,46	0,6	0,7	0,71
Сырой протеин	12	13	15	15
Обменная энергия, МДж/кг	11	11	12,5	12,1
Суточная норма, кг/гол.	2–2,5	2,5–3	4,5–5,3	2,6–3

содержат от 30 до 50% протеина, не сбалансированного по аминокислотному составу (табл. 3).

Балансирование рационов, по сути, сводится к устранению дефицита незаменимых аминокислот путем подбора ингредиентов и синтетических аналогов недостающих аминокислот. Например, чтобы получить при откорме свиньи 670–700 г привеса, достаточно на 1 т комбикорма из пшеницы (93,3%), люцерновой муки (4%) и минерально-витаминной добавки (2,7%) внести 3,4 кг кристаллического лизина.

Затраты протеина можно резко сократить, если полностью обеспечить норму аминокислот. Например, сумма незаменимых аминокислот для 2–4-месячных поросят

Таблица 3

Баланс аминокислот сои и модель «идеального» протеина. %

Аминоки-	Количество в	Аминокислотный баланс, лизин = 100			
слота	сое	Полножирная соя	«Идеальный» протеин		
Лизин	2,2	100	100		
Метионин	0,5	23	48		
Треонин	1,41	64	65		
Триптофан	0,48	22	18		
Гистидин	0,89	40	40		
Аргинин	2,55	116	42		

составит 5% от сухого вещества рациона. В практике свиноводства создается «идеальный» протеин путем обогащения низкобелковых зерновых рационов смесью препаратов из недостающих аминокислот: лизина, метионина, треонина и триптофана.

В рационе поросят 10% «идеального» протеина равноценны рекомендуемым 17% сырого протеина по действующим нормам.

Пример из практики. При уровне сырого протеина 16,5% в опытном рационе (кукуруза — 70%, люцерновая мука — 3, подсолнечниковый шрот — 17, горох — 5, дрожжи — 3% и минерально-витаминные добавки) среднесуточный привес свиней на откорме составил 744 г, а при уровне 10,4% «идеального состава» (кукуруза — 92,4%, люцерновая мука — 3, лизин — 0,36, триптофан — 0,08, метионин — 0,12% и минерально-витаминные добавки) привес практически тот же — 739 г.

При балансировании рационов за счет комбинирования зерновых и высокобелковых кормов мы контролировали только количество лизина. Если его достаточно, то по остальным аминокислотам можно допустить некоторый избыток. Так, для поросят в возрасте 2–4 месяца учитывали количество доступных аминокислот в белковых концентратах (табл. 4).

В трех предлагаемых рецептах комбикорма доступный лизин составил 8,4 кг/т. Первый рецепт: зерно злаков — 87%, рыбная мука — 11, минерально-витаминная добавка — 2%; второй рецепт: зерно злаков — 74%, соевый шрот — 24, минерально-витаминная добавка — 2%; третий рецепт: зерно злаков — 64%, подсолнечниковый шрот — 34, минерально-витаминная добавка — 2%.

В опыте по добавлению синтетических аминокислот к пшеничному рациону мы учитывали доступность белка. Зерно пшеницы обеспечено доступным лизином на 42%, треонином— на 73, метионином— на 76% (от «идеального» протеина). Синтетический лизин добавляли до уровня содержания треонина, то есть до 73% $(8,4~\mathrm{r}\cdot73)/100=6,13~\mathrm{r}$. Из 6,13 г вычитаем 3,5 г (содержание лизина в 1 кг пшеницы), получаем 2,63 г. Это количество лизина следует добавить к пшеничному рациону в расчете на 1 кг корма.

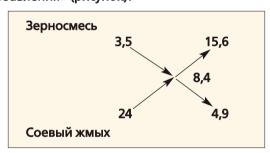
При наличии препаратов лизина и треонина рекомендуется добавлять их в корм до уровня третьей лимитирующей аминокислоты, в данном случае — метионина, содержание которого составляет 76% от потребности.

В этом случае расчет выглядит так:

лизин:
$$8.4 \cdot 76 = 6.38 \cdot 6.38 \cdot -3.5 \cdot = 2.88 \cdot 6.38 \cdot = 2.88 \cdot = 2.8$$

треонин:
$$\frac{8,4 \cdot 76}{100} = 3,65 \cdot 3,65 \cdot -3,5 \cdot = 0,15 \cdot r.$$

Таблица 4 Содержание доступных аминокислот в кормах


Содержание сырого	Аминокислота					
протеина в корме,%	Лизин	Метио-	Трип-	Tpeo-	Гисти-	
mporomia z nopino, /o	ЛИЗИП	нин	тофан	нин	дин	
Зерномесь:						
ячмень, пшеница,						
кукуруза (3 : 2 : 1), 11,8	3,5	3,9	1,4	3,3	2,2	
Рыбная мука, 64	47	24	7,2	23	14,2	
Соевый шрот, 46	24	10	5,2	17	11	
Подсолнечниковый						
шрот, 43	17	11	5,2	13	9,1	
Потребность, кг/гол.	8,4	5	1,5	4,8	2,5	

Три первые лимитирующие синтетические аминокислоты — лизин, треонин и метионин — добавляем до потребной нормы.

Расчет следующий:

лизин на 1 кг корма из пшеницы 8,4 г – 3,5 г = 4,9 г; треонин 4,8 г – 3,5 г = 1,3 г; метионин 5 г – 3,8 г = 1,2 г.

Количество белкового концентрата, добавляемого к злаковой зерносмеси, рассчитываем по лизину методом «разбавления» (рисунок).

В левой части рисунка — содержание лизина в корме (г/кг), в данном случае в зерносмеси и соевом жмыхе; в центре — потребность в лизине для определенной возрастной группы свиней (г/кг); в правой — разница между содержанием лизина в корме и его нормой (г/кг).

$$15,6 + 4,9 = 20,5 (100\%)$$
.

Для шрота: 20,5 - 100

$$4,9-x, x = 23,9\%$$
;

доля зерносмеси, соответственно, 76,1%.

Минеральные и прочие добавки включали в рацион за счет уменьшения его зерновой части.

Краснодарский край