= **ZOOTECHNY AND VETERINARY** =

Results from Index Evaluation of Kazakh White-Headed and Hereford Cattle for Liveweight

A. T. Bisembaev^a, Kh. A. Amerkhanov^b, Yu. A. Yuldashbaev^b, J. M. Kasenov^a, S. T. Zhali^a, A. E. Chindaliev^a, D. A. Baimukanov^a, *, and V. A. Demin^b

^a TOO Science and Production Center for Animal Husbandry and Veterinary, Astana, 010000 (Z10P6B8) Kazakhstan ^b Russian State Agricultural University—Moscow Timiryazev Agricultural Academy (MTSKhA), Moscow, 127550 Russia *e-mail: dbaimukanov@mail.ru

Received July 17, 2023; revised August 24, 2023; accepted September 5, 2023

Abstract—The results from the research study to show the dynamics of liveweight for the Kazakh White-Headed and Hereford cattle youngstock and the index evaluation for liveweight to create the subsequent breeding livestock populations have been reported. The selection index evaluation for liveweight (at birth, weaning, and the age of 12 months) was performed with the best linear unbiased prediction (BLUP) method to form the breeding herds on main farms. The method to estimate the selection index value was developed based on the statistical method for the animal genetic model and the predicted breeding-value indices for three production parameters: liveweight at birth, weaning, and the age of 12 months. Overall, 9503 and 2766 farms for rearing the Kazakh White-Headed and the Hereford cattle livestock, respectively, were analyzed. The accuracy of the breeding value index estimation with the BLUP AM method for the Kazakh White-Headed calf bulls and heifers at birth, weaning, and the age of 12 months comprised 0.509-0.557 and 0.534-0.573, 0.274-0.319 and 0.354-0.368, and 0.336-0.418 and 0.388-0.415, respectively. The accuracy of the breeding value index estimation with the BLUP AM method for the Hereford calf bulls and heifers at birth, weaning, and the age of 12 months comprised 0.531-0.810 and 0.511-0.565, 0.330-0.608 and 0.257-0.366, and 0.386-0.498 and 0.342-0.414, respectively. The BLUP AM method can provide the opportunity to improve the accuracy of evaluation of the Kazakh White-Headed and Hereford cattle livestock through the liveweight measurements at birth, weaning, and the yearling age.

Keywords: beef cattle, Kazakh White-Headed breed, Hereford breed, index evaluation, liveweight, BLUP,

bull calves, heifers

DOI: 10.3103/S106836742401004X

INTRODUCTION

Genetic variations, which may be achieved through selective breeding, are mostly specified by the characteristics of the selected bull sires and their selective parameters for effective selection policy [1, 2]. The livestock breeding value is one of the aspects of the selection breeding program focused on developing the target-inherited traits and selecting the desirable specimens [3–5].

Selective-breeding practices require selecting the bull sires of high production performance combined with the other genetic parameters [6]. Bull selection based on the actual ancestor and progeny performance is a positive factor effect on gradual inherited consolidation of the target trait [7].

In countries with developed livestock farming (the United States, Canada, France, etc.), statistical approaches and methods, including the animal genetic breeding value with the animal mixed biomet-

ric models (AM/MM E: Animal Model/Mixed Model Equation) based on the best linear unbiased prediction (BLUP), are used to predict the genetic characteristics of specimens (firstly, the bull sires).

All the factors involved in the model are simultaneously assessed, which can provide the opportunity to compare the values for animals of different generations, despite any genetic trend in a population. The popular value indices, such as the expected progeny difference or deviation (EPD), the estimated breeding value (EBV), etc., are used based on this mathematical method [8, 9].

Increasing the breeding beef-livestock population size requires its genetic improvement and production of big animals capable of maintaining high growth rates for a long time, attaining the heavy carcass conformation with optimal fat deposition, and achieving high reproductive performance and good milkability.

Selection of bull sires with the most valuable beef characteristics, continually passing these specific economically important traits onto their progeny, is the foundation for building highly productive herds. The bull sire breeding value should be estimated based on the two-phase estimation for its own performance and the performance of its progeny. Therefore, improvement and application of the modern methods for bull evaluation relative to increasing the proportion of highly productive beef cattle remain challenges in Kazakhstan.

The objectives of the research study are to analyze the liveweight dynamics in the Kazakh White Headed and Hereford cattle youngstock and to perform the index selection evaluation for their liveweight to determine the reasonableness of this method for creating the breeding livestock population.

EXPERIMENTAL

Index breeding-value assessment of the beef cattle for selection traits was performed with the best linear unbiased prediction method (BLUP). The advantage of this method is to determine the linear predicted biometric animal model (AM) involving multiple permanent, periodic, and occasional factor effects (environments, seasons, keeping and feeding conditions, additive genetic functions, selection breeding groups, and the other randomly registered and unaccounted for factors) on exhibiting the economically important and productive traits [10, 11].

The research study was conducted based on the data on production and zootechnical events in the herds of pedigree cattle of the Hereford and Kazakh White-Headed breeds on the commercial breeding farms registered in the database of the Information Analytics System of the Republic of Kazakhstan (IAS

DB). The beef cattle production parameters required for estimation with the BLUP methods are the live-weight at birth, weaning, and the yearling age. The factor effects taken into consideration included differences in keeping the specimens across the farms, calving years and seasons, sex—age calf groups, maternal age, birth type (twin or single), additive genetic variance components caused by parental inheritance taken through three generations, etc. The general form of equation for the animal linear biometric model is present as follows:

$$y_{yijklm} = \mu + a_i + s_j + d_k + h_l + p_m + e_{ijklm},$$
 (1)

where y_{yijklm} denotes production traits (including liveweight at birth, weaning and the age of 12 months in this case), μ is general average value for all the involved animals, a_i is additive genetic variance in a calf evaluated in accordance with pedigree-based data, s_j is animal sex since bull calves and heifers are different in body mass, d_k is year-season of animal birth, h_l is herd or farm, p_m is selective groups with similar keeping and feeding conditions, and e_{ijklm} is model error because of unaccounted factors.

The selection indices in the equation indicate the groups with similar factor effects on production of the evaluated animals. The values for liveweight at birth and weaning were adjusted taking into account the maternal age affecting these values (Table 1). In addition, the liveweight values at weaning were adjusted to consistent 210 days and 365 days of age. The initial weight values were adjusted with formulae:

$$ALWb = LW + FALWb, (2)$$

where ALWb denotes adjusted liveweight at birth, kg; LWb is liveweight at birth; and FALWb is liveweight at birth, adjusted for maternal age factor, kg;

$$ALWy = \frac{LWy - LWw}{CAy - Caw} \times 155 + ALWw,$$
 (3)

Table 1. Adjustments for calf liveweight, made taking into account the maternal age

Mother's age	Adjustment for liveweight	Adjustment for livew	reight at weaning, kg
Mother's age	at birth, kg	bull calf	heifer
2 years	+3.1	+33	+27
3 years	+1.3	+17	+14
4 years	+0.4	+7	+4.5
5 to 10 years	0	0	0
11 years and older	+0.9	+12	+11

Breed,	At	birth, kg	Liveweight at weaning	ng at 210 days, kg	Liveweight at 365 days, kg					
sex-age group	п	$M \pm m$	n	$M \pm m$	n	$M \pm m$				
			Kazakh White Head	led						
Bull calves	158873	27.70 ± 0.01	122428	206.30 ± 0.06	86727	315.30 ± 0.08				
Heifers	346 172	25.80 ± 0.01	300504	192.40 ± 0.03	234087	281.70 ± 0.03				
	•	'	Hereford			'				
Bull calves	24859	28.90 ± 0.03	17807	215.10 ± 0.24	12792	318.50 ± 0.37				
Heifers	59672	28.10 ± 0.02	49806	203.20 ± 0.13	39930	301.30 ± 0.18				

Table 2. Dynamics of average liveweight in bull calves and heifers across analyzed cattle livestock

where ALWw is adjusted liveweight at weaning, kg; LWw is liveweight at weaning, kg; CAw is calf age at weighing, days; and FALWw is liveweight at weaning, adjusted for maternal age factor, kg; and

$$ALWw = \frac{LWw - LWb}{Caw} \times 210 + FALWw + ALWb.$$
(4)

where ALWy is adjusted liveweight at the yearling age, kg; LWy is liveweight at the yearling age, kg; and CAy is calf age at weighing at the yearling age, days.

The data to calculate the breeding value index (BVI) were taken from the database of the Information Analytics System of the Republic of Kazakhstan. Thus, this database involves 9503 registered farming companies for rearing and breeding the Kazakh White Headed cattle livestock, including 17 farms, 43 farms, and 242 farm enterprises holding more than 10 000 cattle, 5000–10000 cattle, and 1000–5000 cattle livestock, respectively. In addition, there is information on 2766 farms specialized on the Hereford cattle, including nine farms with 10000 animals, nine farms with 5000–10000 animals, and 62 farm enterprises holding 1000–5000 cattle livestock.

The survey-based index evaluation of the cattle of both breeds for liveweight was performed with 20 specimens (ten bull calves and ten heifers) of 24–28 kg birth liveweight.

RESULTS AND DISCUSSION

Regarding the examined Kazakh White-Headed cattle livestock population, the bull calf liveweight at birth, on 210 day, and at the yearling age made up, on

average, 27.7, 206.3, and 315.3 kg, respectively, while the liveweight parameter values for heifers comprised 25.8, 192,4, and 281.7 kg, respectively. With respect to the Hereford cattle livestock, the parameter data for bull calves were recorded as 28.9, 215.1, and 318.5 kg, respectively, while the parameter values for heifers comprised 28.1, 203.2, and 301.3 kg, respectively (Table 2).

The estimated values for index evaluation indicate that the Kazakh White-Headed bull calf liveweight at birth, at weaning, adjusted to 210 days, at 12 months of age, and adjusted to 365 days should comprise 24–28, 185–249, 161.1–219,4, 296–350, and 292.8–351.5 kg, respectively. With respect to heifers, the estimated parameter values should comprise 24–28, 177–206, 157.8–228.9, 275–300, and 282.8–299.3 kg, respectively.

The accuracy of the index breeding-value assessment of the Kazakh White-Headed bull calves and heifers at birth, weaning, and 12 months of age comprised 0.509–0.557 and 0.534–0.573, 0.274–0.319 and 0.354–0.368, and 0.336–0.418 and 0.388–0.415, respectively (Table 3). The accuracy of the index breeding-value assessment of the Hereford bull calves and heifers at birth, weaning, and 12 months of age comprised 0.531–0.810 and 0.511–0.565, 0.330–0.608 and 0.257–0.366, and 0.386–0.498 and 0.342–0.414, respectively (Table 4).

The cattle livestock achieving 5 years of age and older, which was evaluated for liveweight at birth, weaning, 210 days of age, and 12 months of age with the BLUP method, exceeded the breed standards for liveweight. Thus, the average liveweight of the mature (5-year-old) Hereford and Kazakh White-Headed

Table 3. Results in survey-based index estimation of liveweight in Kazakh White Headed Cattle

	at the age of 12 months	accuracy		0.352	0.343	0.418	0.396	0.406	0.372	0.377	0.375	0.375	0.336	_	0.415	0.404	0.412	0.403	0.388	0.407	0.412	0.412	0.413	0.403
	at the age o	BVI		4.72	89.9	2.12	2.53	-0.86	0.16	-6.29	1.44	-3.48	11.01		-9.31	-10.80	-11.06	-11.62	-3.30	-1.41	0.64	5.22	0.24	-2.27
Estimate,	at weaning	accuracy		0.286	0.277	0.379	0.343	0.358	0.313	0.319	0.316	0.317	0.274	_	0.368	0.356	0.363	0.354	0.339	0.362	0.364	0.365	0.366	0.353
Esti	at we	BVI		2.48	1.89	5.63	9.04	6.17	1.14	-1.16	2.24	1.28	0.04	_	-6.13	-6.26	-5.88	-5.23	4.68	-4.70	98.0—	1.34	0.11	0.37
	at birth	accuracy	_	0.516	0.513	0.577	0.537	0.543	0.524	0.532	0.524	0.526	0.509	_	0.546	0.542	0.545	0.540	0.573	0.534	0.540	0.541	0.540	0.537
		BVI		1.19	2.16	-0.09	-0.39	-0.70	0.24	-3.66	0.97	-0.07	-0.18	-	-4.68	-4.97	-4.58	-4.40	0.03	-0.72	0.28	1.69	-0.22	-0.10
	adjusted	to 365 days	Bull calves	356.2	356.3	302.5	309.0	302.8	299.6	300.3	292.8	300.1	351.5	Heifers	299.3	288.8	288.8	298.2	294.6	297.4	285.8	282.8	296.6	284.7
	nervear	per year		350	350	300	310	304	303	302	296	303	350		285	275	275	284	291	300	289	286	300	288
Liveweight, kg	adjusted	to 210 days		211.9	200.1	217.6	213.9	219.4	175.6	202.1	161.1	180.5	177.3		6.981	187.5	188.1	196.1	228.9	182.3	159.8	157.8	175.1	175.2
Ľ	at weaning	at weaming		195	195	255	241	249	210	185	189	211	192	_	189	192	192	192	206	177	177	177	177	177
	t hirth	at Olleti		25	25	27	25	26	24	25	25	24	28		25	24	25	26	28	26	25	28	25	26
	Year of birth			2019	2019	2019	2019	2019	2020	2020	2020	2020	2020	-	2019	2019	2019	2019	2019	2020	2020	2020	2020	2020
Identification	number of an	amma		4538109	9228229	8096780	8096783	8096835	9308340	9308571	9310548	9310553	9311541		7898642	7898755	7899177	7899238	8084362	8817224	8817230	8817254	8817372	8817423

RUSSIAN AGRICULTURAL SCIENCES Vol. 50 No. 1 2024

 Table 4. Results in survey-based index estimation of liveweight in Hereford Cattle

ndentification number 0												
	Year of birth	4 +i4 +c	oringow to	adjusted	100111001	adjusted	at b	at birth	at we	at weaning	at the age or	at the age of 12 months
		- at 011111	at wealing	to 210 days	pei yeai	to 365 days	BVI	accuracy	BVI	accuracy	BVI	accuracy
						Bull calves						
8092287	2019	56	235	228.8	330	326.3	-2.43	0.536	4.89	0.343	0.10	0.396
8092293	2019	28	200	194.7	320	316.4	-0.85	0.540	4.12	0.352	4.73	0.402
8092294	2019	30	224	231.6	330	334.6	0.49	0.810	7.42	0.608	7.99	0.498
8092298	2019	28	230	207.9	330	330.2	-0.02	0.536	6.95	0.347	12.80	0.395
8092302	2019	25	236	236.7	330	330.1	-2.46	0.533	8.23	0.345	7.58	0.394
9322710	2020	30	226	231.6	381	372.1	-1.80	0.539	-4.82	0.355	0.85	0.404
9333725	2020	25	185	172.3	297	285.0	-2.78	0.531	-2.86	0.331	-12.83	0.387
9333727	2020	31	191	178.0	281	289.0	-0.51	0.531	-0.97	0.331	-5.69	0.387
9333728	2020	29	200	186.3	306	294.3	-1.90	0.531	-2.99	0.330	09.6-	0.386
9333729	2020	30	242	224.3	330	338.5	-2.44	0.531	0.01	0.331	-4.62	0.387
-	-		-	-	-	Heifers		-		-		
8092322	2019	28	210	206.9	285	282.9	-1.10	0.564	3.56	0.354	1.17	0.398
8092325	2019	26	214	210.6	315	312.6	-0.95	0.565	4.36	0.354	8.43	0.398
8095207	2019	30	237	233.1	373	381.8	1.66	0.541	4.91	0.363	5.94	0.409
8095221	2019	30	179	178.7	300	307.4	1.62	0.544	-3.14	0.366	-8.32	0.414
8095346	2019	31	231	219.8	359	369.2	-0.08	0.539	-3.67	0.354	-15.41	0.404
9312517	2020	28	206	209.8	382	367.7	-1.69	0.542	-5.23	0.361	5.02	0.410
9318090	2020	29	195	207.0	378	371.3	-1.19	0.540	-8.92	0.358	4.50	0.406
9318094	2020	28	218	193.8	343	337.3	-1.73	0.540	-8.72	0.357	-0.55	0.406
9323942	2020	25	228	196.7	274	282.3	-2.43	0.514	-2.05	0.282	2.74	0.348
9323947	2020	25	226	195.6	274	282.2	-1.93	0.511	-1.02	0.275	6.94	0.342

RUSSIAN AGRICULTURAL SCIENCES Vol. 50 No. 1 2024

Bulls Cows Breed $M \pm m$ $M \pm m$ number, n number, n Kazakh White Headed 801.4 ± 13.8 4308 536.8 ± 0.6 111 Hereford 14 834.1 ± 14.5 423 508.5 ± 3.3 Total 125 4731

Table 5. Average values for liveweight of mature (5-year-old) Kazakh White-Headed and Hereford cattle livestock

bulls comprised 834.1 and 801.4 kg, respectively, and the parameter values for cows comprised 508.5 and 536.8 kg, respectively (Table 5). The produced data can demonstrate the efficiency of this method for index evaluation of cattle for liveweight.

CONCLUSIONS

The BLUP AM method can provide the opportunity to improve the accuracy of evaluation of the Kazakh White-Headed and Hereford cattle for liveweight at birth, weaning, and the yearling age.

The accuracy of the breeding value index estimation of the Kazakh White-Headed calf bulls and heifers at birth, weaning, and the age of 12 months comprised 0.509–0.557 and 0.534–0.573, 0.274–0.319 and 0.354–0.368, and 0.336–0.418 and 0.388–0.415, respectively. With respect to the Hereford cattle, the parameter values comprised 0.531–0.810 and 0.511–0.565, 0.330–0.608 and 0.257–0.366, and 0.386–0.498 and 0.342–0.414, respectively.

FUNDING

The research study was carried out with the specialized target-program financial support of the Ministry of Agriculture, the Republic of Kazakhstan, within the framework of science and science-technology program IRN BR10764981, "Development of Technologies for Effective Managing the Selective Breeding Processes to Preserve and Improve the Genetic Resources in Beef Cattle Farming" ("Animal Livestock Industry Development Based on Intensive Technologies").

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

The animal-related experiments were conducted in accordance with Directive 2010/63/EU of the European Parliament and the Council on the protection of animals used for scientific surveys. The sample collection and survey objective protocols were approved by the Institutional Animal Care and Use Committee, All-Russia Research Institute of Sheep and Goat Breeding, Stavropol, Russian Federation (decision no. 2023–0045, April 14, 2023).

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

REFERENCES

- 1. Tishkina, T.N., Vel'matov, A.P., and Tishkina, A.F., Evaluation of servicing bulls by meat productivity of their offspring, *Vestn. Ul'yanovsk. Gos. S-kh. Akad.*, 2022, vol. 2, no. 58, pp. 165–170.
- 2. Katmakov, P.S., Anisimova, E.I., and Bushov, A.V., Exterior assessment of servicing bulls of simmental breed and their offerings, *Vestn. Ul'yanovsk. Gos. S-kh. Akad.*, 2022, vol. 2, no. 58, pp. 154–158.
- 3. Kalashnikov, A.E., Golubkov, A.I., Shchegol'kov, N.F., et al., Problems and issues in forecasting the genetic breeding value of agricultural animals, *Vestn. Novosib. Gos. Agrar. Univ.*, 2022, vol. 4, no. 65, pp. 77–96.
- 4. Dmitrieva, V.I., Kol'tsov, D.N., and Gontov, M.E., et al., The relationship between the breeding value of stud bulls and productive longevity of their daughters, *Dostizh. Nauki Tekh. APK*, 2020, vol. 34, no. 11, pp. 88–92.
- 5. Kholodova, L.V., Genetic potential and breeding value of bull producers, *Vestn. Novosib. Gos. Agrar. Univ*, 2020, vol. 2, no. 55, pp. 106–113.
- Alifanov, V. and Alifanov, S., Management of control and selection yards, *Molochn. Myasn. Skotovod.*, 1996, nos. 6–7, pp. 22–24.
- Barabash, V.I. and Kozlovskaya, M.V., Selection of double plus bulls to stabilize the milk productivity of daughters, *Zootekhniya*, 2002, no. 10, pp. 2–5.
- 8. Bich, A.I., Selection work with dual-purpose cattle, *Zootekhniya*, 2002, no. 6, pp. 5–8.
- 9. Bolgov, A.E., Karmanova, E.L., and Plyashchenko, N.A., Stability of assessments of bulls of the Kholmogory breed on the resistance of daughters to mastitis, *S-kh. Biol.*, 1987, no. 10, pp. 95–99.
- 10. Karymsakov, T.N., Abugaliev, S.K., and Baimukanov, D.A., Evaluation of the breeding value of sires by genome analysis, *Agrar. Nauka*, 2019, no. 10, pp. 41–42.
- 11. Abugaliev, S.K., Seidaliev, N.B., Dalibaev, E.K., et al., Procedure of custom mating and genomic analysis of bull-calves in dairy cattle breeding, *Dokl. Nats. Akad. Nauk Resp. Kaz.*, 2018, no. 5, pp. 41–47.

Translated by O. Zhiryakova

Publisher's Note. Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.